Single molecule dynamics of gene expression measured on single genes in living cells

Yaron Shav-Tal Bar-Ilan University Ramat Gan, Israel

mRNA transcription in 'real-time'

Beyer & Osheim. Genes Dev. 1988 How to study gene expression in living cells?

mRNA Polymerase

Following mRNA dynamics in living cells

mRNP diffusion

Shav-Tal et al. Science 2004

Transcription kinetics

mRNP export

Mor et al. Nat. Cell. Biol. 2010

Darzacq et al. Nat. Struct. Mol. Biol. 2007

Tandem array gene systems for following gene expression in living cells

Tandem array gene systems for following gene expression in living cells

mRNA transcription (FRAP) (mRNA = yellow) Measuring transcriptional kinetics of single genes

Approach A Tagging of an endogenous gene

β-actin transcription observed in primary cells from a MS2-knock-in mouse

(Lionnet et al. Nat. Methods 2011)

Measuring transcriptional kinetics of single genes

Approach B Site-specific single-allele recombination

Detection of transcription activity on single alleles

Yunger et al. *Nat. Methods* 2010 Yunger et al. *Nat. Protocols* 2013

HEK293 cells

Detection of active cyclin D1 alleles

CMV promoter

Endogenous *CCND1* promoter

The kinetic difference between the CMV and CCND1 promoters

Single mRNA quantification

FRAP – transcription kinetics

The kinetic difference between the CMV and CCND1 promoters

	CMVpr	D1pr
RNAs per cell	114 <u>+</u> 40	41+30
RNA per allele	14+4	7+4
Polymerase spacing (nt)	237	335
Promoter firing (sec)	22	52
Transcription rate	~0.3-0.8kb/min	

Yuval Garini, Liat Altman

Transcription kinetics throughout the cell cycle

Transcription site doublets

Living cells

RNA FISH

Two transcription sites are prominent from late S phase and onwards

The formation of a second transcription site

65 min

44 min

Duplicated transcription sites are less potent

FRAP on 2 sites

Nascent mRNA quantification

Transcription kinetics

mRNA export

Studying the effect of splicing on transcription kinetics

Splicing is co-transcriptional

Detected at transcription sites

Are splicing factors recruited to an intronless gene?

(de Almeida and Carmo-Fonseca 2008)

U1 snRNP is recruited to an intronless gene

(Phatnani and Greenleaf, Genes Dev 2006)

Measuring elongation kinetics using FRAP

FRAP (mRNA)

Measuring elongation kinetics using FRAP

Total polymerase kinetics remain unchanged

FRAP (GFP-Pol II)

DNA ChIP (Pol II)

Splicing inhibition affects E6 kinetics

FRAP (mRNA)

DNA ChIP (Pol II)

mRNAs are stalled on the E6 gene

This is not accumulation of aberrant transcripts

mRNAs are retained although the polymerase has left

Kinetics of mRNP nucleoplasmic transport

Every 6 min for 6:45 hrs

mRNPS appeared in the nucleoplasm 5-10 min after transcription induction. After another ~10 min the mRNPs could be detected in the cytoplasm.

(Mor et al. Nat. Cell Biol. 2010)

mRNP transport kinetics

mRNP tracks

mRNP export

Dbp5 is required for mRNA export in human cells

Carmody & Wente JCS 2009

משרד המדע, הטכנולוגיה והחלל

Ministry of Science, Technology and Space وزارة العلوم, التكنولوجيا والفضاء

Ruđer Bošković Institute

